A Constraint Satisfaction Approach for Enclosing Solutions to Parametric Ordinary Differential Equations

نویسندگان

  • Micha Janssen
  • Pascal Van Hentenryck
  • Yves Deville
چکیده

This paper considers initial value problems for ordinary differential equations (ODEs), where some of the data is uncertain and given by intervals as is the case in many areas of science and engineering. Interval methods provide a way to approach these problems, but they raise fundamental challenges in obtaining high accuracy and low computation costs. This work introduces a constraint satisfaction approach to these problems which enhances traditional interval methods with a pruning step based on a global relaxation of the ODE. The relaxation uses Hermite interpolation polynomials and enclosures of their error terms to approximate the ODE. Our work also shows how to find an evaluation time for the relaxation that minimizes its local error. Theoretical and experimental results show that the approach produces significant improvements in accuracy over the best interval methods for the same computation costs. The results also indicate that the new algorithm should be significantly faster when the ODE contains many operations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Pruning in Parametric Differential Equations

Initial value problems for parametric ordinary differential equations (ODEs) arise in many areas of science and engineering. Since some of the data is uncertain, traditional numerical methods do not apply. This paper considers a constraint satisfaction approach that enhances traditional interval methods with a pruning component which uses a relaxation of the ODE and Hermite interpolation polyno...

متن کامل

A Constraint Satisfaction Approach to Parametric Differential Equations

Parametric ordinary differential equations arise in many areas of science and engineering. Since some of the data is uncertain and given by intervals, traditional numerical methods do not apply. Interval methods provide a way to approach these problems but they often suffer from a loss in precision and high computation costs. This paper presents a constraint satisfaction approach that enhances ...

متن کامل

APPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS

In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...

متن کامل

The Response of Two-Degree of Freedom Self-Sustained Systems with Quadratic Nonlinearities to a Parametric Excitation (RESEARCH NOTE)

In this study the interaction between self-excited and paramet rically excited oscillations in two-degree-of-freedom systems with quadratic nonlinearities is investigated. The fundamental parametric resonance of the first mode and 3:1 internal resonance is considered, followed by 1:2 internal and parametric resonances of the second mode. The method of multiple time scales is applied to derive f...

متن کامل

Including Ordinary Differential Equations Based Constraints in the Standard CP Framework

Coupling constraints and ordinary differential equations has numerous applications. This paper shows how to introduce constraints involving ordinary differential equations into the numerical constraint satisfaction problem framework in a natural and efficient way. Slightly adapted standard filtering algorithms proposed in the numerical constraint satisfaction problem framework are applied to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2002